Abstract

Cryptography and computational algebra designs are complex systems based on modular arithmetic and build on multi-level modules where bit-width is generally larger than 64-bit. Because of their particularity, such designs pose a real challenge for verification, in part because large-integer’s functions are not supported in actual hardware description languages (HDLs), therefore limiting the HDL testbench utility. In another hand, high-level verification approach proved its efficiency in the last decade over HDL testbench technique by raising the latter at a higher abstraction level. In this work, we propose a high-level platform to verify such designs, by leveraging the capabilities of a popular tool (Matlab/Simulink) to meet the requirements of a cycle accurate verification without bit-size restrictions and in multi-level inside the design architecture. The proposed high-level platform is augmented by an assertion-based verification to complete the verification coverage. The platform experimental results of the testcase provided good evidence of its performance and re-usability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.