Abstract

ObjectiveChronic obstructive pulmonary disease (COPD) and pulmonary tuberculosis (PTB) share a number of common risk factors, including innate immunity-related genetic factors. In the present study, we compared the role of genetic variations of the TLR4 gene in susceptibility to COPD and PTB and illuminated the underlying molecular mechanism of functional single-nucleotide polymorphisms (SNPs).MethodsA population-based case control study was performed in a Chinese Han population and included 152 COPD cases, 1601 PTB cases and 1727 controls. Five SNPs in the TLR4 gene (rs10759932, rs2737190, rs7873784, rs11536889, and rs10983755) were genotyped using TaqMan allelic discrimination technology. We estimated the effects of SNPs using the odds ratio (OR) together with 95% confidence interval (CI). Dual-luciferase reporter vectors expressing different genotypes of SNPs were constructed and transfected into the human HEK 293 T cell line to explore their effects on potential transcription activity.ResultsAfter Bonferroni correction, the genetic polymorphisms of all five SNPs remained significantly associated with COPD, while rs10759932 and rs2737190 were also associated with PTB. Compared with rs10759932-TT, individuals carrying TC (OR: 0.42, 95% CI: 0.28–0.64) or CC (OR: 0.24, 95% CI: 0.09–0.63) had a significantly reduced risk of COPD. However, individuals carrying TC (OR: 1.28, 95% CI: 1.11–1.49) or CC (OR: 1.26, 95% CI: 0.98–1.62) had an increased risk of PTB. The OR (95% CI) for allele rs10759932-C was 0.45 (0.32–0.62) for COPD and 1.18 (1.07–1.32) for PTB. For rs2737190, heterozygous AG was related to a decreased risk of COPD (OR: 0.32, 95% CI: 0.21–0.49) and an increased risk of PTB (OR: 1.30, 95% CI: 1.11–1.52). The dual-luciferase reporter assay showed decreased transcription activity caused by rs10759932-C and rs2737190-G.ConclusionGenetic polymorphisms of rs10759932 and rs2737190 in TLR4 are significantly related to both COPD and PTB but with inverse effects. The altered transcription activity caused by mutations in these two loci may partly explain the observed relationship.

Highlights

  • Both chronic obstructive pulmonary disease (COPD) and tuberculosis (TB) primarily affect the lungs and are major causes of morbidity and mortality worldwide [1]

  • The COPD case group consisted of 131 males and 21 females, and the pulmonary tuberculosis (PTB) case group consisted of 1181 males and 420 females, while the control group consisted of 1272 males and 455 females

  • We adjusted for age, sex, smoking and drinking when analyzing the effect of TLR4 Single nucleotide polymorphism (SNP)

Read more

Summary

Methods

A population-based case control study was performed in a Chinese Han population and included 152 COPD cases, 1601 PTB cases and 1727 controls. Five SNPs in the TLR4 gene (rs10759932, rs2737190, rs7873784, rs11536889, and rs10983755) were genotyped using TaqMan allelic discrimination technology. We estimated the effects of SNPs using the odds ratio (OR) together with 95% confidence interval (CI). Dual-luciferase reporter vectors expressing different genotypes of SNPs were constructed and transfected into the human HEK 293 T cell line to explore their effects on potential transcription activity

Results
Conclusion
Introduction
Materials and methods
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.