Abstract

Levamisole is a broad-spectrum anthelmintic which permanently activates cholinergic receptors from nematodes, inducing a spastic paralysis of the worms. Whereas this molecule is widely used to control parasitic nematodes impacting livestock, its efficacy is compromised by the emergence of drug-resistant parasites. In that respect, there is an urgent need to identify and validate molecular markers associated with resistance. Previous transcriptomic analyses revealed truncated cholinergic receptor subunits as potential levamisole resistance markers in the trichostrongylid nematodes Haemonchus contortus, Telodorsagia circumcincta and Trichostrongylus colubriformis. In the present study we used the Xenopus oocyte, as well as the free-living model nematode Caenorhabditis elegans, as heterologous expression systems to functionally investigate truncated isoforms of the levamisole-sensitive acetylcholine receptor (L-AChR) UNC-63 subunit. In the Xenopus oocyte, we report that truncated UNC-63 from C. elegans has a strong dominant negative effect on the expression of the recombinant C. elegans L-AChRs. In addition, we show that when expressed in C. elegans muscle cells, truncated UNC-63 induces a drastic reduction in levamisole susceptibility in transgenic worms, thus providing the first known functional validation for this molecular marker in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.