Abstract

Ultrathin separators are indispensable to high-energy-density zinc-ion batteries (ZIBs), but their easy failure caused by zinc dendrites poses a great challenge. Herein, 23µm-thick functional ultrathin separators (FUSs), realizing superb electrochemical stability of zinc anodes and outstanding long-term durability of ultrathin separators, are reported. In the FUSs, an ultrathin but mechanically strong nanoporous membrane substrate benefits fast and flux-homogenized Zn2+ transport, while a metal-organicframework(MOF)-derived C/Cu nanocomposite decoration layer provides rich low-barrier zinc nucleation sites, thereby synergistically stabilizing zinc anodes to inhibit zinc dendrites and dendrite-caused separator failure. Investigation of the zinc affinity of the MOF-derived C/Cu nanocomposites unravels the high zincophilicity of heteroatom-containing C/Cu interfaces. Zinc anodes coupled with the FUSs present superior electrochemical stability, whose operation lifetime exceeds 2000h at 1mA cm-2 and 600h at 10mA cm-2 , 40-50 times longer than that of the zinc anodes using glass-fiber separators. The reliability of the FUSs in ZIBs and zinc-ion hybrid supercapacitors is also validated. This work proposes a new strategy to stabilize zinc anodes and provides theoretical guidance in developing ultrathin separators for high-energy-density zinc-based energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.