Abstract

Although water is essential for photosynthetic activation in lichens, rates of vapor uptake and activation in humid air, which likely influence their niche preferences and distribution ranges, are insufficiently known. This study simultaneously quantifies rehydration kinetics and PSII reactivation in sympatric, yet morphologically and functionally distinct cephalolichens (Lobaria amplissima, Lobaria pulmonaria, Lobaria virens). High-temporal resolution monitoring of rehydrating thalli by automatic weighing combined with chlorophyll fluorescence imaging of maximal PSII efficiency (FV/FM) was applied to determine species-specific rates of vapor uptake and photosynthetic activation. The thin and loosely attached growth form of L. pulmonaria rehydrates and reactivates faster in humid air than the thick L. amplissima, with L. virens in between. This flexible hydration strategy is consistent with L. pulmonaria’s wide geographical distribution stretching from rainforests to continental forests. By contrast, the thick and resupinate L. amplissima reactivates slowly in humid air but stores much water when provided in abundance. This prolongs active periods after rain, which could represent an advantage where abundant rain and stem flow alternates with long-lasting drying. Understanding links between morphological traits and functional responses, and their ecological implications for species at risk, is crucial to conservation planning and for modelling populations under various climate scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call