Abstract
Functional verification of microprocessors is one of the most complex and expensive tasks in the current system-on-chip design methodology. Simulation using functional test vectors is the most widely used form of processor validation. A significant bottleneck in the validation of such systems is the lack of automated techniques for directed test generation. While existing model checking--based approaches have proposed several promising ideas for automated test generation, many challenges remain in applying them to industrial microprocessors. The time and resources required for test generation using existing model checking--based techniques can be prohibitively large. This article presents an efficient test generation technique using decompositional model checking. The contribution of the article is the development of both property and design decomposition procedures for efficient test generation of pipelined processors. Our experimental results using a multi-issue MIPS processor and an industrial processor based on Power Architecture™ Technology demonstrate several orders-of-magnitude reduction in validation effort by drastically reducing both test generation time and test program length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.