Abstract

Functional validation is a major bottleneck in pipelined processor design due to the combined effects of increasing design complexity and lack of efficient techniques for directed test generation. Directed test vectors can reduce overall validation effort, since shorter tests can obtain the same coverage goal compared to the random tests. This article presents a specification-driven directed test generation methodology. The proposed methodology makes three important contributions. First, a general graph model is developed that can capture the structure and behavior (instruction set) of a wide variety of pipelined processors. The graph model is generated from the processor specification. Next, we propose a functional fault model that is used to define the functional coverage for pipelined architectures. Finally, we propose two complementary test generation techniques: test generation using model checking, and test generation using template-based procedures. These test generation techniques accept the graph model of the architecture as input and generate test programs to detect all the faults in the functional fault model. Our experimental results on two pipelined processor models demonstrate several orders-of-magnitude reduction in overall validation effort by drastically reducing both test-generation time and number of test programs required to achieve a coverage goal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.