Abstract

The formation of functional synapses is a late milestone of neuronal differentiation. The establishment of functional synapses can be used to assess neuronal characteristics of different cell lines. In the present study, we examined the in vitro conditions that influence the ability of human neurons derived from the NT2 cell line (NT2N neurons) to establish synapses. The morphologic, immunologic, and electrophysiologic characteristics of these synapses was examined. In the absence of astrocytes, NT2N neurons rarely formed synapses and their action potentials were weak and uncommon. In contrast, when plated on primary astrocytes, NT2N neurons were able to form both glutamatergic excitatory (71%) and GABAergic inhibitory (29%) functional synapses whose properties (kinetics, ion selectivity, pharmacology, and ultrastructure) were similar to those of synapses of neurons in primary cultures. In addition, coculture of NT2N neurons with astrocytes modified the morphology of the neurons and extended their in vitro viability to more than 1 year. Because astrocyte-conditioned medium did not produce these effects, we infer that direct contact between NT2N neurons and astrocytes is required. These results suggest that NT2N neurons are similar to primary neurons in their synaptogenesis and their requirement for glial support for optimal survival and maturation. This system provides a model for further investigations into the neurobiology of synapses formed by human neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.