Abstract

Microbial mats are complex biofilms in which the major element cycles are represented at a millimeter scale. In this study, community variability within microbial mats from the Camargue wetlands (Rhone Delta, southern France) were analyzed over 3 years during two different seasons (spring and autumn) and at different layers of the mat (0–2, 2–4, and 4–6 mm). To assess bacterial diversity in the mats, amplicons of the V1–V2 region of the 16S rRNA gene were sequenced. The community’s functionality was characterized using two approaches: (i) inferred functionality through 16S rRNA amplicons genes according to PICRUSt, and (ii) a shotgun metagenomic analysis. Based on the reads distinguished, microbial communities were dominated by Bacteria (∼94%), followed by Archaea (∼4%) and Eukarya (∼1%). The major phyla of Bacteria were Proteobacteria, Bacteroidetes, Spirochaetes, Actinobacteria, Firmicutes, and Cyanobacteria, which together represented 70–80% of the total population detected. The phylum Euryarchaeota represented ∼80% of the Archaea identified. These results showed that the total bacterial diversity from the Camargue microbial mats was not significantly affected by seasonal changes at the studied location; however, there were differences among layers, especially between the 0–2 mm layer and the other two layers. PICRUSt and shotgun metagenomic analyses revealed similar general biological processes in all samples analyzed, by season and depth, indicating that different layers were functionally stable, although some taxa changed during the spring and autumn seasons over the 3 years. Several gene families and pathways were tracked with the oxic-anoxic gradient of the layers. Genes directly involved in photosynthesis (KO, KEGG Orthology) were significantly more abundant in the top layer (0–2 mm) than in the lower layers (2–4 and 4–6 mm). In the anoxic layers, the presence of ferredoxins likely reflected the variation of redox reactions required for anaerobic respiration. Sulfatase genes had the highest relative abundance below 2 mm. Finally, chemotaxis signature genes peaked sharply at the oxic/photic and transitional oxic-anoxic boundary. This functional differentiation reflected the taxonomic diversity of the different layers of the mat.

Highlights

  • Extant microbial mats are valid equivalents of some of the Earth earliest Archaean ecosystems, which form lithified (e.g., Shark Bay, Western Australia) as well as non-lithified (e.g., Ebro Delta, north-eastern Spain) structures (Dupraz and Visscher, 2005; Wierzchos et al, 2006; Ruvindy et al, 2016)

  • Camargue microbial mats composition of Bacteria, Archaea and Eukarya were based on data obtained by shotgun metagenomics

  • The eukaryotic diversity of the Camargue microbial mats was sparse, in contrast to the vast bacterial diversity. This was probably due to the broad metabolic capabilities of Bacteria, which enable them to occupy a broad range of chemical niches, whereas the metabolic versatility of eukaryotes is more limited, despite their ability to survive under high sulfide, fermentative, and anoxic conditions

Read more

Summary

Introduction

Extant microbial mats are valid equivalents of some of the Earth earliest Archaean ecosystems, which form lithified (e.g., Shark Bay, Western Australia) as well as non-lithified (e.g., Ebro Delta, north-eastern Spain) structures (Dupraz and Visscher, 2005; Wierzchos et al, 2006; Ruvindy et al, 2016) Among their features is their visible lamination, result of physicochemical gradients (e.g., light, oxygen and sulfide) along the vertical axis that allows the creation of microenvironments at a millimeter scale within the mat and justify its taxonomically and functionally heterogeneity (Guerrero and Berlanga, 2013; Harris et al, 2013; Wong et al, 2015; Saghaï et al, 2017). Long et al (2012) tested antagonistic interaction between heterotrophic bacteria isolates from microbial mats as regulators of the community structure

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call