Abstract
α-l-Arabinofuranosidase (Abf), a debranching enzyme that can remove arabinose substituents from arabinoxylan, promotes the hydrolysis of hemicellulose in plant biomass. However, the functional specificity of Abfs from different glycoside hydrolase (GH) families on the digestion of arabinoxylan and their synergistic interaction with xylanase have not been systematically studied. In this work, we characterized three Abfs (AxhA, AbfB, and AbfC) from GH62, GH54, and GH51 families in Aspergillus niger An76. Quantitative transcriptional analysis showed that expression of the axhA gene was upregulated as a result of induction by xylose substrates, whereas expression of the abfB gene was mainly induced by arabinose. Recombinant AxhA, AbfB, and AbfC exhibited different hydrolytic performances. AxhA showed the highest catalytic activity toward wheat arabinoxylan (WAX) and tended to hydrolyze monosubstituted arabinofuranose units, whereas AbfB had higher catalytic activity on AN and debranched arabinan (DAN), having the ability to cope with mono- and disubstituted arabinofuranose units. Furthermore, AbfC had greater arabinofuranosidase activity on p-nitrophenyl-α-l-arabinofuranoside (pNP-AraF) than on other substrates. Moreover, three Abfs displayed obvious synergistic action with GH11 xylanase XynB against WAX and barley husk residues. The elucidation of the degradation mechanisms of Abfs will lay a theoretical foundation for the efficient industrialized transformation of arabinoxylans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.