Abstract

A novel alpha-L-arabinofuranosidase (alpha-AraF) belonging to glycoside hydrolase (GH) family 43 was cloned from Humicola insolens and expressed in Aspergillus oryzae. (1)H-NMR analysis revealed that the novel GH43 enzyme selectively hydrolysed (1-->3)-alpha-L-arabinofuranosyl residues of doubly substituted xylopyranosyl residues in arabinoxylan and in arabinoxylan-derived oligosaccharides. The optimal activity of the cloned enzyme was at pH 6.7 and 53 degrees C. Two other novel alpha-L-arabinofuranosidases (alpha-AraFs), both belonging to GH family 51, were cloned from H. insolens and from the white-rot basidiomycete Meripilus giganteus. Both GH51 enzymes catalysed removal of (1-->2) and (1-->3)-alpha-L-arabinofuranosyl residues from singly substituted xylopyranosyls in arabinoxylan; the highest arabinose yields were obtained with the M. giganteus enzyme. Combinations (50:50) of the GH43 alpha-AraF from H. insolens and the GH51 alpha-AraFs from either M. giganteus or H. insolens resulted in a synergistic increase in arabinose release from water-soluble wheat arabinoxylan in extended reactions at pH 6 and 40 degrees C. This synergistic interaction between GH43 and GH51 alpha-AraFs was also evident when a GH43 alpha-AraF from a Bifidobacterium sp. was supplemented in combination with either of the GH51 enzymes. The synergistic effect is presumed to be a result of the GH51 alpha-AraFs being able to catalyse the removal of single-sitting (1-->2)-alpha-L- arabinofuranosyls that resulted after the GH43 enzyme had catalysed the removal of (1-->3)-alpha-L-arabinofuranosyl residues on doubly substituted xylopyranosyls in the wheat arabinoxylan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.