Abstract

In human pathogens, the sulfate assimilation pathway provides reduced sulfur for biosynthesis of essential metabolites, including cysteine and low-molecular-weight thiol compounds. Sulfonucleotide reductases (SRs) catalyze the first committed step of sulfate reduction. In this reaction, activated sulfate in the form of adenosine-5'-phosphosulfate (APS) or 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is reduced to sulfite. Gene knockout, transcriptomic and proteomic data have established the importance of SRs in oxidative stress-inducible antimicrobial resistance mechanisms. In previous work, we focused on rational and high-throughput design of small-molecule inhibitors that target the active site of SRs. However, another critical goal is to discover functionally important regions in SRs beyond the traditional active site. As an alternative to conservation analysis, we used directed evolution to rapidly identify functional sites in PAPS reductase (PAPR). Four new regions were discovered that are essential to PAPR function and lie outside the substrate binding pocket. Our results highlight the use of directed evolution as a tool to rapidly discover functionally important sites in proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.