Abstract

1. Osmolarity-dependent (osmo-dependent) ionic currents from follicle-enclosed Xenopus oocytes (follicles) were studied using the two-microelectrode voltage-clamp technique, combined with intra-oocyte pressure injection of sucrose or polyethylene glycols (PEGs). 2. Intra-oocyte injections of sucrose or PEG (3-25 nmol) generated inward membrane currents (follicles held at -60 mV) associated with an increase in membrane conductance. These currents were carried mainly by chloride ions (ICl(osm)), and were strongly attenuated by increasing the tonicity of the external medium, or by external application of La3+ (0.1-1 mM). 3. The ability to generate ICl(osm) depended on the molecular weight of the injected PEG. Injections of PEG 200 or 300 generated ICl(osm) in 95% of the follicles tested, PEG 600 generated comparable currents in only 20% of the follicles, while similar injections of PEG 1000 did not elicit ICl(osm). 4. Octanol (1-1.5 mM), a gap junction channel blocker, reversibly inhibited 50-90% of the ICl(osm) generated by injections of sucrose or PEG 300. Moreover, sucrose or PEG injections did not elicit ICl(osm) in defolliculated oocytes. 5. It is concluded that an increase in the internal osmolarity of the follicular cells activates a mechanism, probably involving cellular swelling, which leads to the opening of ICl(osm) channels most probably located in the follicular cell membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.