Abstract

Functional response and mutual interference are important attributes of natural enemies that should be analysed in species with the potential to be used as biological control agents in order to increase the predictive power of the possible benefits and/or consequences of their release in the field. Our main objective was to determine the functional response and mutual interference of Coptera haywardi (Oglobin), a pupal parasitoid of economically important fruit flies (Diptera: Tephritidae). The functional response of C. haywardi on A. ludens pupae corresponded to a type II model, with an attack rate of 0.0134 host pupa/h and a handling time of 1.843 h, which reveals a meticulous selection process of pupal hosts. The effect of mutual interference among foraging females was negatively correlated with increased parasitoid density in the experimental arena, showing a gradual decline in attack rate per individual female. The increase in the number of foraging females also had an impact on the number of oviposition scars per pupa and the number of immature parasitoids per dissected pupa, but not on the percentage of adult emergence or the sex ratio. Our results suggest that C. haywardi could act as a complementary parasitoid in the control of fruit fly pupae, since the random distribution of these pupae in the soil would decrease the possibility of aggregation and mutual interference between foraging females.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call