Abstract

The native yeast type I fatty acid synthase (FAS) is a complex, rigid enzyme, and challenging to engineer for the production of medium- or short-chain fatty acids. Introduction of a type II FAS is a promising alternative as it allows expression control for each discrete enzyme and the addition of heterologous thioesterases. In this study, the native Saccharomyces cerevisiae FAS was functionally replaced by the Escherichia coli type II FAS (eFAS) system. The E. coli acpS + acpP (together), fabB, fabD, fabG, fabH, fabI, fabZ, and tesA were expressed in individual S. cerevisiae strains, and enzyme activity was confirmed by in vitro activity assays. Eight genes were then integrated into the yeast genome, while tesA or an alternate thioesterase gene, fatB from Ricinus communis or TEII from Rattus novergicus, was expressed from a multi-copy plasmid. Native FAS activity was eliminated by knocking out the yeast FAS2 gene. The strains expressing only the eFAS as de novo fatty acid source grew without fatty acid supplementation demonstrating that this type II FAS is able to functionally replace the native yeast FAS. The engineered strain expressing the R. communis fatB thioesterase increased total fatty acid titer 1.7-fold and shifted the fatty acid profile towards C14 production, increasing it from <1% in the native strain to more than 30% of total fatty acids, and reducing C18 production from 39% to 8%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.