Abstract

Glycine receptor (GlyR) chloride channels mediate fast inhibitory neurotransmission in the spinal cord and brainstem. Four GlyR subunits (α1-3, β) have been identified in humans, and their differential anatomical distributions underlie a diversity of synaptic isoforms with unique physiological and pharmacological properties. To improve our understanding of these properties, we induced the formation of recombinant synapses between cultured spinal neurons and HEK293 cells expressing GlyR subunits of interest plus the synapse-promoting molecule, neuroligin-2A. In the heterosynapses thus formed, recombinant α1β and α3β GlyRs mediated fast decaying inhibitory postsynaptic currents (IPSCs) whereas α2β GlyRs mediated slow decaying IPSCs. These results are consistent with the fragmentary information available from native synapses and single channel kinetic studies. As β subunit incorporation is considered essential for localizing GlyRs at the synapse, we were surprised that α1-3 homomers supported robust IPSCs with β subunit incorporation accelerating IPSC rise and decay times in α2β and α3β heteromers only. Finally, heterosynapses incorporating α1D80Aβ and α1A52Sβ GlyRs exhibited accelerated IPSC decay rates closely resembling those recorded in native synapses from mutant mice homozygous for these mutations, providing an additional validation of our technique. Glycinergic heterosynapses should prove useful for evaluating the effects of drugs, hereditary disease mutations or other interventions on defined GlyR subunit combinations under realistic synaptic activation conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.