Abstract

Functional reasoning (FR) enables people to derive and explain function of artifacts in a goal-oriented manner. FR has been studied and employed in various disciplines, including philosophy, biology, sociology, and engineering design, and enhanced by the techniques borrowed from computer science and artificial intelligence. The outcome of FR research has been applied to engineering design, planning, explanation, and learning. A typical FR system in engineering design usually incorporates representational mechanisms of function concept together with description mechanisms of state, structure, or behavior, and explanations and reasoning mechanisms to derive and explain functions. As for representation, philosophers have long argued whether function of an artifact is a genuine property of it. As for explanation and reasoning, they have produced theories for functional ascription by an external viewer as part of an explanation. To build an FR-based system, the theory based on which the system is built and the underlying assumptions must be explicitly identified. This point is not always clear in the engineering of FR-based systems. Understanding the underlying assumptions, logical formulation, and limitations of FR theories will help developers assessing their systems correctly. The purpose of this paper is to review various FR theories and their underlying assumptions and limitations. This later serves as a benchmark for comparing various FR techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call