Abstract
This paper introduces regularized functional principal component analysis for multidimensional functional data sets, utilizing Gaussian basis functions. An essential point in a functional approach via basis expansions is the evaluation of the matrix for the integral of the product of any two bases (cross-product matrix). Advantages of the use of the Gaussian type of basis functions in the functional approach are that its cross-product matrix can be easily calculated, and it creates a much more flexible instrument for transforming each individual's observation into a functional form. The proposed method is applied to the analysis of three-dimensional (3D) protein structural data that can be referred to as unbalanced data. It is shown that our method extracts useful information from unbalanced data through the application. Numerical experiments are conducted to investigate the effectiveness of our method via Gaussian basis functions, compared to the method based on B-splines. On performing regularized functional principal component analysis with B-splines, we also derive the exact form of its cross-product matrix. The numerical results show that our methodology is superior to the method based on B-splines for unbalanced data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.