Abstract
Processed nerve allografts are a promising alternative to nerve autografts, providing an unlimited, readily available supply and avoiding donor-site morbidity and the need for immunosuppression. Currently, clinically available nerve allografts do not provide satisfactory results for motor reconstruction. This study evaluated motor recovery after reconstruction of a long nerve gap using a processed nerve allograft and the influence of storage techniques. Nerve allografts were decellularized using elastase and detergents and stored at either 4° or -80°C. In 36 New Zealand White rabbits, a 3-cm peroneal nerve gap was repaired with either an autograft (group 1, control) or a cold-stored (group 2) or frozen-stored (group 3) processed nerve allograft. Nerve recovery was evaluated using longitudinal ultrasound measurements, electrophysiology (compound muscle action potentials), isometric tetanic force, wet muscle weight, and histomorphometry after 24 weeks. Longitudinal ultrasound measurements showed that the cold-stored allograft provided earlier regeneration than the frozen-stored allograft. Furthermore, ultrasound showed significantly inferior recovery in group 3 than in both other groups (p < 0.05). Muscle weight and isometric tetanic force showed similar outcomes in the autograft and cold-stored allograft groups [p = 0.096 (muscle weight) and p = 0.286 (isometric tetanic force)], and confirmed the inferiority of the frozen-stored allograft to the autograft [p < 0.01 (muscle weight) and p = 0.02 (isometric tetanic force)]. Frozen storage of the nerve allograft significantly impairs functional recovery and should be avoided. The cold-stored optimized nerve allograft yields functional recovery similar to the gold standard autograft in the reconstruction of a 3-cm motor nerve defect. Future studies should focus on further improvement of the nerve allograft.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.