Abstract
We have collected theoretical arguments supporting the functional role of nano-metallic coatings of solar cells, which enhance solar cell efficiency via by plasmon-strengthening the absorption of sun-light photons and reducing the binding energy of photoexcitons. The quantum character of the plasmonic effect related to the absorption of photons (called the optical plasmonic effect) is described in terms of the Fermi golden rule for the quantum transitions of semiconductor-band electrons induced by plasmons from a nano-metallic coating. The plasmonic effect related to the lowering of the exciton binding energy (called the electrical plasmonic effect) is of particular significance for metalized perovskite solar cells and is also characterized in quantum mechanics terms. The coupling between plasmons in nanoparticles from a coating with band electrons in a semiconductor substrate significantly modifies material properties (dielectric functions) both of the particles and the semiconductor, beyond the ability of the classical electrodynamics to describe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.