Abstract

Electrical stimulation of the ear of deaf patients via cochlear implants offers a unique occasion to study activity of central auditory pathways with fMRI, without bias due to scanner noise. Such measurements, however, require one to control the possible interference between fMRI acquisition and the implanted electrodes. A series of measurements on a customized phantom designed to characterize the level of induced currents during MRI acquisition is presented. These experiments demonstrate that the major artifactual contribution is due to radiofrequency interaction and that safe experimental conditions can be obtained with proper shielding of the stimulation cables. The induced currents could be reduced to low levels (<50 μA for a duration <2 ms), below the acoustic perceptual threshold of cochlear implant subjects. Subsequent fMRI experiments on a patient using an Ineraid cochlear implant were conducted. Results revealed bilateral localized activation of the primary auditory cortex. Stimulation of two different intracochlear electrodes elicited activity in two neighboring, but different, regions, in agreement with the known tonotopical organization of the auditory cortex. This work paves the way for fMRI studies of a broad selection of auditory paradigms without interference from unwanted noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.