Abstract

In recent years, liquid metals (LMs) have garnered increasing attention for their expanded applicability, and wide application potential in various research fields. Among them, gallium (Ga)-based LMs exhibit remarkable analytical performance in electrical and optical sensors, thanks to their excellent conductivity, large surface area, biocompatibility, small bandgap, and high elasticity. This review comprehensively summarizes the latest advancements in functional micro-/nanostructured Ga-based LMs for biochemical sensing and imaging applications. Firstly, the electrical, optical, and biocompatible features of Ga-based LM micro-/nanoparticles are briefly discussed, along with the manufacturing and functionalization processes. Subsequently, we demonstrate the utilization of Ga-based LMs in biochemical sensing techniques, encompassing electrochemistry, electrochemiluminescence, optical sensing techniques, and various biomedical imaging. Lastly, we present an insightful perspective on promising research directions and remaining challenges in LM-based biochemical sensing and imaging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.