Abstract

Pancreatic cancer (PC) often correlates with high mortality due to late diagnosis, rapid metastasis, and resistance to chemotherapy. miR-128-3p has been validated as a tumor suppressor in PC. This study explored the functional mechanism of miR-128-3p in epithelial-mesenchymal transition (EMT) of PC cells. Four PC cancer cell lines with different degrees of malignancy and normal pancreatic cells were selected to detect expressions of hsa-miR-128-3p and ZEB1 by RT-qPCR and Western blot. miR-128-3p mimic or si-ZEB1 was delivered into PANC-1 cells and miR-128-3p inhibitor or oe-ZEB1 was delivered into AsPC-1 cells. Expressions of epithelial and mesenchymal markers were analyzed by Western blot and cell fluorescence staining. The binding relationship between miR-128-3p and ZEB1 was examined by bioinformatics analysis and dual-luciferase assay, and verified by RT-qPCR and Western blot. PC cell invasion and migration were assessed by Transwell assays. Generally, hsa-miR-128-3p was poorly-expressed in PC cells. However, it was relatively more expressed in AsPC-1 cells with epithelial phenotypes relative to PANC-1 cells with mesenchymal phenotype, whereas ZEB1 expression showed opposite tendencies. PANC-1 cells transfected with miR-128-3p mimic or si-ZEB1 showed upregulated E-cadherin and downregulated N-cadherin, and transformed from mesenchymal phenotypes to epithelial phenotypes, with decreased invasion and migration, while opposite results occurred in AsPC-1 cells transfected with miR-128-3p inhibitor or oe-ZEB1. miR-128-3p targeted ZEB1. oe-ZEB1 antagonized the inhibition of miR-128-3p mimic on PANC-1 cell EMT, invasion, and migration, while si-ZEB1 reversed the facilitation of miR-128-3p inhibitor in AsPC-1 cells. In conclusion, miR-128-3p inhibited PC cell EMT, invasion, and migration by targeting ZEB1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.