Abstract

Neuronal activation sequence information is essential for understanding brain functions. Extracting such timing information from blood-oxygenation-level-dependent functional magnetic resonance imaging (fMRI) signals is confounded by local cerebral vascular reactivity (CVR), which varies across brain locations. Thus, detecting neuronal synchrony as well as inferring inter-regional causal modulation using fMRI signals can be biased. Here we used fast fMRI measurements sampled at 10 Hz to measure the fMRI latency difference between visual and sensorimotor areas when participants engaged in a visuomotor task. The regional fMRI timing was calibrated by subtracting the CVR latency measured by a breath-holding task. After CVR calibration, the fMRI signal at the lateral geniculate nucleus (LGN) preceded that at the visual cortex by 496 ms, followed by the fMRI signal at the sensorimotor cortex with a latency of 464 ms. Sequential LGN, visual, and sensorimotor cortex activations were found in each participant after the CVR calibration. These inter-regional fMRI timing differences across and within participants were more closely related to the reaction time after the CVR calibration. Our results suggested the feasibility of mapping brain activity using fMRI with accuracy in hundreds of milliseconds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.