Abstract
Traditional (univariate) analysis of functional MRI (fMRI) data relies exclusively on the information contained in the time course of individual voxels. Multivariate analyses can take advantage of the information contained in activity patterns across space, from multiple voxels. Such analyses have the potential to greatly expand the amount of information extracted from fMRI data sets. In the present study, multivariate statistical pattern recognition methods, including linear discriminant analysis and support vector machines, were used to classify patterns of fMRI activation evoked by the visual presentation of various categories of objects. Classifiers were trained using data from voxels in predefined regions of interest during a subset of trials for each subject individually. Classification of subsequently collected fMRI data was attempted according to the similarity of activation patterns to prior training examples. Classification was done using only small amounts of data (20 s worth) at a time, so such a technique could, in principle, be used to extract information about a subject’s percept on a near real-time basis. Classifiers trained on data acquired during one session were equally accurate in classifying data collected within the same session and across sessions separated by more than a week, in the same subject. Although the highest classification accuracies were obtained using patterns of activity including lower visual areas as input, classification accuracies well above chance were achieved using regions of interest restricted to higher-order object-selective visual areas. In contrast to typical fMRI data analysis, in which hours of data across many subjects are averaged to reveal slight differences in activation, the use of pattern recognition methods allows a subtle 10-way discrimination to be performed on an essentially trial-by-trial basis within individuals, demonstrating that fMRI data contain far more information than is typically appreciated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.