Abstract
BackgroundAutism spectrum disorder (ASD) has been associated with disrupted brain connectivity, yet a comprehensive understanding of the dynamic neural underpinnings remains lacking. This study employed concurrent electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) techniques to investigate dynamic functional connectivity (dFC) patterns and neurovascular characteristics in children with ASD. We also explored associations between neurovascular characteristics and the developmental trajectory of adaptive behavior in individuals with ASD. MethodsResting-state EEG and fNIRS data were simultaneously recorded from 58 ASD and 63 TD children. We implemented a k-means clustering approach to extract the dFC states for each modality. In addition, a multimodal covariance network (MCN) was constructed from the EEG and fNIRS dFC features to capture the neurovascular characteristics linked to ASD. ResultsEEG analyses revealed atypical properties of dFC states in the beta and gamma bands in children with ASD compared to TD children. For fNIRS, the ASD group exhibited atypical properties of dFC states such as duration and transitions relative to the TD group. The MCN analysis revealed significantly suppressed functional covariance between right superior temporal and left Broca's areas, alongside enhanced right dorsolateral prefrontal-left Broca covariance in ASD. Notably, we found that early neurovascular characteristics can predict the developmental progress of adaptive functioning in ASD. ConclusionThe multimodal investigation revealed distinct dFC patterns and neurovascular characteristics associated with ASD, elucidating potential neural mechanisms underlying core symptoms and their developmental trajectories. Our study highlights that integrating complementary neuroimaging modalities may aid in unraveling the complex neurobiology of ASD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.