Abstract
Localized high-concentration electrolytes have attracted much attention of researchers due to their low viscosity, low cost, and relatively higher electrochemical performance than their low-concentration counterparts. In our work, 1.5 M (mol L-1) locally concentrated ether-based electrolyte has been obtained by adding 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (HFE) into a 4 M LiFSI concentrated dimethoxyethane (DME)-based electrolyte. The optimal ratio is determined by density functional theory (DFT) calculation and experimental combination, and finally, DH(3/5)-1.5M-LiFSI (DME/HFE = 3:5 by volume) is obtained. The electrolyte not only has relatively good physical properties such as low viscosity and high conductivity but also shows decent electrochemical performance. Li∥Cu half-cells can maintain a coulombic efficiency of no less than 99% after circulating for 250 cycles under the condition of 1 mA cm-2 current density and 1 mAh cm-2 lithium deposition for each cycle, and the stable battery polarization voltage was about 50 mV. Furthermore, 0.15 M lithium trifluoromethyl acetate (LiCO2CF3) has been added as an additive to enhance the oxidation stability. The new electrolyte DH(3/5)-1.65M-LiFC (LiFC/LiFSI + LiCO2CF3) makes Li||NCM523 batteries maintain about 83% capacity after cycling for 250 times with a 0.5 C charge current density and a 1 C discharge current density of 160 mAh g-1 when charged to 4.3 V. Furthermore, this new additive has a little negative effect on the Li||Cu half-cell performance under the same condition as before, indicating this new type of localized high-concentration DME-based electrolyte benefits both high-voltage cathode and lithium-metal anode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.