Abstract
We study a class of non-stationary shot noise processes which have a general arrival process of noises with non-stationary arrival rate and a general shot shape function. Given the arrival times, the shot noises are conditionally independent and each shot noise has a general (multivariate) cumulative distribution function (c.d.f.) depending on its arrival time. We prove a functional weak law of large numbers and a functional central limit theorem for this new class of non-stationary shot noise processes in an asymptotic regime with a high intensity of shot noises, under some mild regularity conditions on the shot shape function and the conditional (multivariate) c.d.f. We discuss the applications to a simple multiplicative model (which includes a class of non-stationary compound processes and applies to insurance risk theory and physics) and the queueing and work-input processes in an associated non-stationary infinite-server queueing system. To prove the weak convergence, we show new maximal inequalities and a new criterion of existence of a stochastic process in the space D given its consistent finite dimensional distributions, which involve a finite set function with the superadditive property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.