Abstract

Estimation of the extreme-value index of a heavy-tailed distribution is investigated when some functional random covariate (i.e. valued in some infinite dimensional space) information is available and the scalar response variable is right-censored. A weighted kernel version of Hill’s estimator of the extreme-value index is proposed and its asymptotic normality is established under mild assumptions.A simulation study is conducted to assess the finite-sample behavior of the proposed estimator. An application to ambulatory blood pressure trajectories and clinical outcome in stroke patients is also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.