Abstract

Genetically encoded calcium indicators (GECIs) and high-resolution confocal microscopy enable dynamic visualization of calcium signals in cells and tissues. Two-dimensional and 3D biocompatible materials mimic the mechanical microenvironments of tumor and healthy tissues in a programmable manner. Cancer xenograft models and ex vivo functional imaging of tumor slices reveal physiologically relevant functions of calcium dynamics in tumors at different progression stages. Integration of these powerful techniques allows us to quantify, diagnose, model, and understand cancer pathobiology. Here, we describe detailed materials and methods used to establish this integrated interrogation platform, from generating transduced cancer cell lines that stably express CaViar (GCaMP5G+QuasAr2) to in vitro and ex vivo calcium imaging of the cells in 2D/3D hydrogels and tumor tissues. These tools open the possibility for detailed explorations of mechano-electro-chemical network dynamics in living systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.