Abstract
Cyanobacteria possess different carotenoids as scavengers of reactive oxygen species. In Synechocystis PCC6803, zeaxanthin, echinenone, β-carotene and myxoxanthophyll are synthesized. By disruption of the ketolase and hydroxylase genes, it was possible to obtain mutants devoid of either zeaxanthin, echinenone, or a combination of both carotenoids. With these mutants, their function in protecting photosynthetic electron transport under high light stress as well as chlorophyll and carotenoid degradation after initiation of singlet oxygen or radical formation was analyzed. Wild type Synechocystis is very well protected against high light-mediated photooxidation. Absence of echinenone affects photosynthetic electron transport to only a small extent. However, complete depletion of zeaxanthin together with a modification of myxoxanthophyll resulted in strong photoinhibition of overall photosynthetic electron transport as well as the photosystem II reaction. In the double mutant lacking both carotenoids the effects were additive. The light saturation curves of photosynthetic electron transport of the high light-treated mutants exhibited not only a lower saturation value but also smaller slopes. Using methylviologen or methylene blue as a radical or singlet oxygen generators, respectively, massive degradation of chlorophyll and carotenoids, indicative of photooxidative destruction of the photosynthetic apparatus, was observed, especially in the mutants devoid of zeaxanthin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.