Abstract

Calcium channel blockers are widely used for treatment of hypertension, because they decrease peripheral vascular resistance through inhibition of voltage-gated calcium channels. Animal studies of renal vasculature have shown expression of several types of calcium channels that are involved in kidney function. It was hypothesized that human renal vascular excitation-contraction coupling involves different subtypes of channels. In human renal artery and dissected intrarenal blood vessels from nephrectomies, PCR analysis showed expression of L-type (Ca(v) 1.2), P/Q-type (Ca(v) 2.1), and T-type subtype (Ca(v) 3.1 and Ca(v) 3.2) voltage-gated calcium channels (Ca(v)s), and quantitative PCR showed highest expression of L-type channels in renal arteries and variable expression between patients of subtypes of calcium channels in intrarenal vessels. Immunohistochemical labeling of kidney sections revealed signals for Ca(v) 2.1 and Ca(v) 3.1 associated with smooth muscle cells of preglomerular and postglomerular vessels. In human intrarenal arteries, depolarization with potassium induced a contraction inhibited by the L-type antagonist nifedipine, EC(50) 1.2×10(-8) mol/L. The T-type antagonist mibefradil inhibited the potassium-induced constriction with large variations between patients. Interestingly, the P/Q-type antagonist, ω-agatoxin IVA, inhibited significantly the contraction with 24% at 10(-9) mol/L. In conclusion L-, P/Q, and T-type channels are expressed in human renal blood vessels, and L- and P/Q-type channels are of functional importance for the depolarization-induced vasoconstriction. The contribution of P/Q-type channels to contraction in the human vasculature is a novel mechanism for the regulation of renal blood flow and suggests that clinical treatment with calcium blockers might affect vascular reactivity also through P/Q-type channel inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.