Abstract

Patients with squamous cell carcinomas (SCCs) of the head and neck are increasingly treated nonsurgically. Imaging plays a critical role in helping define the targets for radiation therapy, especially intensity-modulated radiation therapy, in which the dose gradients are steep. Anatomic imaging with conventional modalities, particularly computed tomography (CT), has been used in patients with head and neck SCCs, but this approach has limitations. Functional imaging techniques, including positron emission tomography (PET) combined with CT or magnetic resonance (MR) imaging, offer complementary information and can be used noninvasively to assess a range of biomarkers in patients with head and neck SCCs, including hypoxia, cell proliferation and apoptosis, and epidermal growth factor receptor status. These biologic markers can be monitored before, during, and after treatment to improve patient selection for specific therapeutic strategies, guide adaptation of therapy, and potentially facilitate more accurate assessment of disease response. This article discusses the practical aspects of integrating functional imaging into head-and-neck radiation therapy planning and reviews the potential of molecular imaging biomarkers for response assessment and therapy adaptation. The uses of PET tracers for imaging cellular processes such as metabolism, proliferation, hypoxia, and cell membrane synthesis are explored, and applications for MR techniques such as dynamic contrast material-enhanced imaging, diffusion-weighted imaging, blood oxygenation level-dependent imaging, and MR spectroscopy are reviewed. The potential of integrated PET/CT perfusion imaging and hybrid PET/MR imaging also is highlighted. These developments may allow more individualized treatment planning in patients with head and neck SCCs in the emerging era of personalized medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call