Abstract

Zeolitic imidazolate framework (ZIF) is of wide interest in biomedical applications due to its extraordinary properties such as high storage capacity, functionality and favorable biocompatibility. However, more comprehensive safety assessments are still essential before ZIF is broadly used in biomedicine. Using the characteristic that aldehyde groups on the surface of ZIF-90 can be modified with other functional groups, a series of ZIF-90s modified with different functional groups (oxime group, carboxyl group, amino group and sulfhydryl group) were synthesized to investigate the effect of functionalization on the toxicity of ZIF-90. ZIF-90 series showed concentration-dependent toxic effects on Photobacterium phosphoreum T3 and the functionalized ZIF-90s are more toxic than pristine ZIF-90, with the ZIF-90 modified with amino group (ZIF-90-NH2) showing the strongest toxicity (IC50 = 23.06 mg/L). Based on the results of the cellular assay and stability exploration, we concluded that corresponding imidazole-ligand release and the property of positively charged are responsible for the elevated toxicity of ZIF-90-NH2. Cell membrane damage, oxidative damage and luminescence damage are the main contributors to the toxic effects of ZIF-90 series. This study explored the effect of surface functionalization on the toxicity of ZIF and proposed mechanistic clues for the safety application of ZIF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call