Abstract
Background Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the world. As the aging population continues to increase globally, treatment of AD and other age-associated neurodegenerative diseases is becoming increasingly important, not only from a human point of view, but also from an economic perspective. In recent years, several attempts have been made to find novel susceptibility genes and pathways relevant for AD. Particularly genome-wide association (GWA) and meta-analysis-based studies have identified several risk variants in different genes, which significantly associate with AD. The subsequent mechanistic characterization of the identified risk genes is extremely important as it may pave the way for the development of new biomarkers and intervention approaches.
Highlights
Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the world
Brain samples were divided into mild, moderate and severe AD subgroups according to the neurofibrillary tangle (NFT) pathology (Braak staging) and expression and splicing changes were analyzed in relation to the disease severity
A subset of the identified AD-associated target genes were further directed to high-throughput RNA interference (RNAi) in vitro screening to characterize specific target genes affecting amyloid precursor protein (APP) processing and Ab generation
Summary
Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the world. As the aging population continues to increase globally, treatment of AD and other age-associated neurodegenerative diseases is becoming increasingly important, from a human point of view, and from an economic perspective. Several attempts have been made to find novel susceptibility genes and pathways relevant for AD. Genome-wide association (GWA) and meta-analysis-based studies have identified several risk variants in different genes, which significantly associate with AD. The subsequent mechanistic characterization of the identified risk genes is extremely important as it may pave the way for the development of new biomarkers and intervention approaches
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.