Abstract

Explore Acori Tatarinowii Rhizoma (ATR) and Polygalae Radix (PR) mechanisms in Alzheimer's disease (AD) treatment through network pharmacology. ATR-PR was investigated in the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, Batman, and Traditional Chinese Medicines Integrated Database (TCMID) to gather information on its chemical components and target proteins. Target genes associated with AD were retrieved from the GeneCards and National Center for Biotechnology Information (NCBI) databases. The integration of these datasets with potential targets facilitated the construction of an AD and ATR-PR protein-protein interaction (PPI) network using the STRING database. The resulting network identified the core active ingredients and main targets of ATR-PR in AD treatment. Cluster analysis of the PPI network was performed using Cytoscape 3.7.1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the Metascape database. Molecular docking simulations revealed potential interactions between the main active ingredients and core targets. Our analysis identified 8 putative components and 455 targets of ATR-PR. We systematically searched for 1306 genes associated with AD, conducted Venn diagram analysis resulting in 156 common targets, and constructed a PPI network with 57 key targets. GO functional analysis highlighted the primary biological processes associated with oxidative stress. KEGG pathway enrichment analysis revealed the involvement of 64 signaling pathways, with the PI3K/Akt signaling pathway playing a key role. Molecular docking analysis indicated a high affinity between the potential targets of ATR-PR and the main compounds of AD. This study sheds light on the complex network of interactions involving ATR-PR in the context of AD. The identified targets, pathways, and interactions provide a foundation for understanding the potential therapeutic mechanisms. The involvement of oxidative stress-related processes and the crucial role of the PI3K/Akt signaling pathway suggest avenues for targeted therapeutic interventions in Alzheimer's disease treatment. Our proposition of the combined use of ATR-PR has emerged as a potential treatment strategy for AD, supported by a network pharmacology approach. This framework provides a robust foundation for future clinical applications and experimental research in the pursuit of effective Alzheimer's disease treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call