Abstract
The endothelial lining of blood vessels is severely affected in type II diabetes. Yet, there is still a paucity on the use of diabetic endothelial cells for study and assessment of implantable devices targeting vascular disease. This critically impairs our ability to determine appropriate topographical cues to be included in implantable devices that can be used to maintain or improve endothelial cell function in vivo. Here, the functional responses of healthy and diabetic human coronary arterial endothelial cells were studied and observed to differ depending on topography. Gratings (2 μm) maintained normal endothelial functions such as adhesiveness, angiogenic capacity and cell-cell junction formation, and reduced immunogenicity of healthy cells. However, a significant and consistent effect was not observed in diabetic cells. Instead, diabetic endothelial cells cultured on the perpendicularly aligned multi-scale hierarchical gratings (250 nm gratings on 2 μm gratings) drastically reduced the uptake of oxidized low-density lipoprotein, decreased immune activation, and accelerated cell migration. Concave microlens (1.8 μm diameter) topography was additionally observed to overwhelmingly deteriorate diabetic endothelial cell function. The results of this study support a new paradigm and approach in the design and testing of implantable devices and biomedical interventions for diabetic patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.