Abstract

In this paper, we show how convolutional neural networks (CNNs) can be used in regression and classification learning problems for noisy and non-noisy functional data (FD). The main idea is to transform the FD into a 28 by 28 image. We use a specific but typical architecture of a CNN to perform all the regression exercises of parameter estimation and functional form classification. First, we use some functional case studies of FD with and without random noise to showcase the strength of the new method. In particular, we use it to estimate exponential growth and decay rates, the bandwidths of sine and cosine functions, and the magnitudes and widths of curve peaks. We also use it to classify the monotonicity and curvatures of FD, the algebraic versus exponential growth, and the number of peaks of FD. Second, we apply the same CNNs to Lyapunov exponent estimation in noisy and non-noisy chaotic data, in estimating rates of disease transmission from epidemic curves, and in detecting the similarity of drug dissolution profiles. Finally, we apply the method to real-life data to detect Parkinson’s disease patients in a classification problem. We performed ablation analysis and compared the new method with other commonly used neural networks for FD and showed that it outperforms them in all applications. Although simple, the method shows high accuracy and is promising for future use in engineering and medical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.