Abstract

Dyslexia is a disability in language and phonetics, with difficulties in learning and reasoning, affecting around 20% of the worldwide population. Detecting dyslexia at an early stage is vital to provide appropriate remedial teaching aid to improve the learning skills of the affected. The key objective of this study is to identify dyslexia based on Anatomical and Functional MRI data. Convolutional Neural Networks and Time Distributed Convolutional Long-Short Term Memory Neural networks are proposed for screening the neuroimaging data. A multimodal fusion technique is proposed to provide a final combined classification based on the anatomical and functional data. Experimental results demonstrate the performance of the multimodal approach over individual modes of MRI data. The result analysis shows that image segmentation has a significant contribution towards improving classifier performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.