Abstract
In neurons, the Ca(2+) signal associated with the dendritic back-propagating action potential codes a chemical message to the different dendritic sites, playing a crucial role in electrical signalling, synaptic transmission and synaptic plasticity. The study of the underlying Ca(2+) current, mediated by different types of voltage-gated Ca(2+) channels, cannot be achieved by using the patch clamp technique. In this article, we used a recently developed cutting-edge optical technique to investigate the physiological behaviour of local Ca(2+) currents along the apical dendrite of CA1 hippocampal pyramidal neurons. We directly measure, for the first time, the synergistic activation and deactivation of the diverse dendritic voltage-gated Ca(2+) channels operating during bursts of back-propagating action potentials to precisely control the Ca(2+) signal. We demonstrate that the Ca(2+) loss via high-voltage-activated channels is compensated by the Ca(2+) entry via the other channels translating in high fidelity of Ca(2+) signalling. In CA1 hippocampal pyramidal neurons, the dendritic Ca(2+) signal associated with somatic firing represents a fundamental activation code for several proteins. This signal, mediated by voltage-gated Ca(2+) channels (VGCCs), varies along the dendrites. In this study, using a recent optical technique based on the low-affinity indicator Oregon Green 488 BAPTA-5N, we analysed how activation and deactivation of VGCCs produced by back-propagating action potentials (bAPs) along the apical dendrite shape the Ca(2+) signal at different locations in CA1 hippocampal pyramidal neurons of the mouse. We measured, at multiple dendritic sites, the Ca(2+) transients and the changes in membrane potential associated with bAPs at 50μs temporal resolution and we estimated the kinetics of the Ca(2+) current. We found that during somatic bursts, the bAPs decrease in amplitude along the apical dendrite but the amplitude of the associated Ca(2+) signal in the initial 200μm dendritic segment does not change. Using a detailed pharmacological analysis, we demonstrate that this effect is due to the perfect compensation of the loss of Ca(2+) via high-voltage-activated (HVA) VGCCs by a larger Ca(2+) component via low-voltage-activated (LVA) VGCCs, revealing a mechanism coupling the two VGCC families of K(+) channels. More distally, where the bAP does not activate HVA-VGCCs, the Ca(2+) signal is variable during the burst. Thus, we demonstrate that HVA- and LVA-VGCCs operate synergistically to stabilise Ca(2+) signals associated with bAPs in the most proximal 200μm dendritic segment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.