Abstract

Two-dimensional self-organization of a series of phenyleneethynylenes was investigated, at ambient conditions, by varying the length of alkoxy chain and introducing functional groups at the terminal positions using high-resolution scanning tunneling microscopy (STM). The model phenyleneethynylene molecule, which does not possess any functional groups, self-organizes into wire like structures on surface. High-resolution STM imaging revealed that molecules are arranged in a skewed 1D fashion. The spacing between the molecular wires was successfully modulated by replacing hexyloxy (C6) chains with dodecyloxy (C12) chains. The initial step of the formation of all the molecular assemblies involves the alkyl CH···acetylenic π interactions (CH···π) leading to the organization of molecules as two types of strips. These strips further interlock to two types of 2D organizations. The hydroxyl as well as aldehyde groups present at the terminal positions of the phenyleneethynylene molecules play an important role in t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.