Abstract
The white-footed mouse (Peromyscus leucopus) is an important reservoir host for the pathogen responsible for Lyme disease in eastern North-America. Indigenous cases of Lyme disease in southern Quebec have increased from two cases in 2004 to 160 cases in 2015. Because of the strong relationship between the white-footed mouse occurrence and the Lyme disease pathogen prevalence, we can estimate the risk of Lyme disease by finding areas of high contact between mice. In this study, we inferred the movement patterns and contact rate of the white-footed mouse in southern Quebec. We used pattern-orientated modelling to estimate a directional measure of functional connectivity from an Individual-Based Model. We replicated the spatial pattern observed in previously published molecular analysis of a white-footed mouse population. A perceptual range of 80 m best explained the genetic structure of the white-footed mouse in the region. The paths of individuals generally overlapped the edges of urban centers and the boundary of linear obstacles such as highways and water bodies. We show that the contact probability of mice was a good predictor of the number of mice caught in the field. Our findings highlight the usefulness of individual-based models to potentially predict high contact areas and disease hotspots across landscapes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.