Abstract

AbstractThe mobility and dispersal of organisms affect population genetics and dynamics, and consequently affect persistence and the risk of extinction. Thus, it is important to understand how organisms move in the fragmented landscapes in order to manage populations and predict the effects of habitat changes on species persistence. This study evaluated the functional connectivity of an orchid bee (Eulaema atleticana Nemésio, 2009) with a high fidelity to forest habitats in the Brazilian Atlantic Forest Corridor by analyzing genetic diversity, spatial genetic structure, and gene flow estimated from microsatellite and mitochondrial markers. Genetic diversity was not correlated with area of the forest fragments, or with forest isolation. At the mosaic scale, Eulaema atleticana showed no significant or low genetic differentiation, indicating genetic homogeneity among forest fragments. A previous field study indicated that Eulaema atleticana was one of the most sensitive Euglossina bees to forest fragmentation but the present molecular analyses demonstrates that current gene flow is sufficient to maintain genetic variability at the mosaic scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call