Abstract
This paper studies a general class of nonlinear varying coefficient time series models with possible nonstationarity in both the regressors and the varying coffiecient components. The model accommodates a cointegrating structure and allows for endogeneity with contemporaneous correlation among the regressors, the varying coefficient drivers, and the residuals. This framework allows for a mixture of stationary and non-stationary data and is well suited to a variety of models that are commonly used in applied econometric work. Nonparametric and semiparametric estimation methods are proposed to estimate the varying coefficient functions. The analytical findings reveal some important differences, including convergence rates, that can arise in the conduct of semiparametric regression with nonstationary data. The results include some new asymptotic theory for nonlinear functionals of nonstationary and stationary time series that are of wider interest and applicability and subsume much earlier research on such systems. The finite sample properties of the proposed econometric methods are analyzed in simulations. An empirical illustration examines nonlinear dependencies in aggregate consumption function behavior in the US over the period 1960-2009.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.