Abstract
Observing large dimension time series could be time-consuming. One identification and classification approach is a time series clustering. This study aimed to compare the accuracy of two algorithms, hierarchical cluster and K-Means cluster, using ACF’s distance for clustering stationary and non-stationary time series data. This research uses both simulation and real datasets. The simulation generates 7 stationary data models and another 7 of non-stationary data models. On the other hands, the real dataset is the daily temperature data in 34 cities in Indonesia. As a result, K-Means algorithm has the highest accuracy for both data models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advances in Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.