Abstract

SummaryA functional clustering (FC) method, k-centres FC, for longitudinal data is proposed. The k-centres FC approach accounts for both the means and the modes of variation differentials between clusters by predicting cluster membership with a reclassification step. The cluster membership predictions are based on a non-parametric random-effect model of the truncated Karhunen–Loève expansion, coupled with a non-parametric iterative mean and covariance updating scheme. We show that, under the identifiability conditions derived, the k-centres FC method proposed can greatly improve cluster quality as compared with conventional clustering algorithms. Moreover, by exploring the mean and covariance functions of each cluster, thek-centres FC method provides an additional insight into cluster structures which facilitates functional cluster analysis. Practical performance of the k-centres FC method is demonstrated through simulation studies and data applications including growth curve and gene expression profile data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.