Abstract

Immunologic tolerance to the hapten TNP was induced in adult mice through the i.v. injection of reactive TNBS. To probe the cellular basis of the tolerant state, splenic cytotoxic T lymphocyte precursors (CTL-P) were stimulated in vitro with haptenated, x-irradiated syngeneic spleen cells in the presence or absence of exogenously added growth factors derived from Concanavalin A-stimulated spleen cell conditioned medium (CAS). The cultures were either conventional bulk cultures or limit dilution cloning cultures. For the latter, cytotoxicity was assessed through a semi-automated, radioautographic 111In-release assay. Suppressive potential was assessed by mixing spleen cells from tolerant mice with normal spleen cells before culture. In the absence of CAS, bulk cultures showed profound tolerance, and suppressive capacity was clearly evident. Suppression was dependent on the presence of TNP-self during culture and affected the generation of CTL from CTL-P and not the effector function of CTL. Cyclophosphamide treatment did not prevent tolerance induction. In the presence of CAS, bulk cultures still showed marked tolerance, but mixing experiments now yielded no evidence of suppression. As documented previously, limit dilution cultures of tolerant spleen cells in the presence of CAS showed a functional clonal deletion of hapten-specific CTL-P. In the absence of CAS, limit dilution cultures became dependent on helper T cells as the limiting element. Tolerant populations showed a diminution of activatable helper T lymphocyte precursors (HTL-P), which may have been due to a functional clonal deletion of HTL-P and/or a concomitant activation of suppressor T cells. Adoptive transfer studies showed that cells from tolerant mice did not detectably influence the number of hapten-specific CTL-P in the spleens of host animals. Taken together, the results suggest that both functional clonal deletion of CTL-P and suppression of HTL-P contribute to the tolerant state induced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call