Abstract

A highly efficient and promiscuous 7,4'-di-O-glycosyltransferase ZjOGT3 was discovered from the medicinal plant Ziziphus jujuba var. spinosa. ZjOGT3 could sequentially catalyse 4'- and 7-O-glycosylation of flavones to produce 7,4'-di-O-glycosides with obvious regio-selectivity. For 7,4'-dihydroxyl flavanones and 3-O-glycosylated 7,4'-dihydroxyl flavones, ZjOGT3 selectively catalyses 7-O-glycosylation. The crystal structure of ZjOGT3 was solved. Structural analysis, DFT calculations, MD simulations, and site-directed mutagenesis reveal that the regio-selectivity is mainly controlled by the enzyme microenvironment for 7,4'-dihydroxyl flavones and 3-O-glycosylated 7,4'-dihydroxyl flavones. For 7,4'-dihydroxyl flavanones, the selectivity is mainly controlled by intrinsic reactivity. ZjOGT3 is the first plant flavonoid 7,4'-di-O-glycosyltransferase with a crystal structure. This work could help understand the catalytic mechanisms of multi-site glycosyltransferases and provides an efficient approach to synthesise O-glycosides with medicinal potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call