Abstract

Azasulfur(vi) compounds such as sulfoximines and sulfonimidamides are attractive due to the unique properties of the S[double bond, length as m-dash]N bond. While the synthesis of these carbon-attached sulfonimidoyl derivatives is well-established, the situation is different for their heteroatom-bound counterparts. In this work, we propose azasulfur(iv) esters as platform chemicals that can be derivatized to obtain all types of SVI[double bond, length as m-dash]N functional groups, among these are the poorly accessible, all-heteroatom imidosulfate esters. Using a chloroamination workflow established here, S-S bond-containing structures such as elemental sulfur or diaryl disulfides can be transformed into imidothionyl or sulfinimidoyl chlorides, which are easily esterified or amidated. Thus, chloramines serve as a versatile [N] and [Cl+] source, and by using them in the context reported here, we advance the set of mild synthetic methods as the latest toolbox member to cover even more of the azasulfur(iv) and (vi) chemical space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.