Abstract

The ferric ion binding protein A of Thermus thermophilus HB8 (TtFbpA) is the periplasmic subunit of an ABC-type iron transporter. Two Fe3+-bound crystal structures at pH 5.5 and pH 7.5 and one apo structure have been reported for TtFbpA. In addition to three Tyr residues, TtFbpA coordinates with Fe3+ using two monodentate HCO3- and one H2O to form a six-coordinated mode at pH 5.5 or one bidentate CO32- to form a five-coordinated mode at pH 7.5. We investigated the biological significance of these Fe3+-bound forms of TtFbpA and the synergistic anions (HCO3- and CO32-). Quantum mechanical calculations in silico indicated that only these coordination modes were plausible out of six possibilities. Comparison of the crystal structures revealed a key motif, RZX1X2L(I/V), that would couple the Fe3+ coordination mode and the TtFbpA protein conformation. Both gel filtration chromatography and isothermal titration calorimetry showed that TtFbpA could bind Fe3+ at pH 7.5 but not at pH 5.5. Isothermal titration calorimetry also revealed that the binding at pH 7.5 was a three-step endothermic reaction that required NaHCO3. These results indicate that the holo structure at pH 5.5 is unstable in solution and may correspond to a transition state of TtFbpA-Fe3+ binding at pH 7.5 because HCO3- is much more abundant than CO32- at both pH values. Reorganisation of the synergistic ions and coupled protein conformational change will occur to form the stable TtFbpA-Fe3+ complex at pH 7.5, but not at pH 5.5. Identification of such a transition state will contribute to molecular design of novel FbpA inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call